Most Repeated Errors in COM-301
Final 2024

Last edit: 10/02/2025

General Mistakes

- Inconsistent answers. Some of the questions in this exam have several parts,
e.g., Q1 asked for an attack, the answers of Q2-4 are based on the attack written
in Q1. Some of the answers in Q2-4 did not match or address the attack
described in Q1.

- Not giving a direct answer to the “yes or no” question. Or alternatively answering
both yes AND no.

Q1

- Stating that BGP hijacking alone can prevent HR from accessing the
seehowiparty website. BGP hijacking by itself does not drop nor modify
packets, only reroutes them but they still arrive at the correct destination
(Peach). Hence it is not enough to achieve Paul’s attack goal. Answers that only
mention BGP hijacking received no point.

Q2-Q4

- Not specifying which DNS attack when arguing over defenses. DNS spoofing
includes DNS hijacking and DNS cache poisoning. DNS hijacking actively
tampers with the DNS response, e.g., by responding with a fake IP address to the
DNS request or not giving any DNS response at all; while DNS cache poisoning
replaces the cached answer in the DNS resolver’s storage with a value decided
by the attacker even before the DNS query is made. These two types of attacks
result in different answers when it comes to defense mechanisms, so it was
important to specify which of the two was considered.

Q3

- Not mentioning the HTTPS certificate when arguing about whether HTTPS
protects from DNS-related attacks. In HTTPS, there is a certificate check when
connecting to a website. Some answers neglected that, if a fake IP address is
given to the HR’s DNS request as part of a DNS hijacking attack, when HR
connects to the website at this fake IP address, this website’s certificate will not



match with the one expected for seehowiparty. In this case, HR will notice that
something went wrong by the alert caused by the mismatched certificate and
detect when a DNS-related attack is happening. Since detecting helps toward
protecting from a DNS attack, answers that argued yes (detecting and alerting
the user is enough to protect) and no (detecting is not enough to protects) were
given points, but justifications that do not mention the certificate (for either yes
or no) received no points.

Q5-Q7

Stating that ASLR shuffles the position of the variables on the stack. ASLR
randomizes the page mappings, not how the variables are allocated on the
stack. If we consider the program given in this exercise, the address of the stack
base and functions will be different per execution; but relatively, x and y will
always be placed contiguously on the stack.

Pointing out the lack of sanitization of b as vulnerability. The fact that b is not
sanitized is not relevant in our case. Similarly, b is, by definition, an int64_t
(which is a 64-bit integer). Itis not possible to “buffer overflow” such a value,
because itis an integer. Hence this is not a vulnerability.

Misusing the terminology. Many answers referred to “memory leak”: a memory
leak in software refers to an improper allocation of resources (e.g., “malloc”
without " free".) Similarly, about “stack overflow” / “stack frame”: in this case,
the attackis not about a stack overflow but rather a buffer overflow. In the
context of the exercise, it can be unclear to what a “stack overflow” refers to. A
stack frame contains variables, arguments, return address and the stack base
pointer. The attack does not overflow the stack frame.

Using a wrong format for the value b. Some answers confuse the usage of
ampersand (&) or asterisk (*) in C, which results in incorrect format when
answering the value of b. In line 10, it returns *(y[0]): the asterisk (*) means that
we are returning the value pointed by the pointer y[0]. The value of y[0] is an
address of a value which y[0] points to. As a reminder of how ampersand (&) or
asterisk (*) are used in C, an example explanation is
https://stackoverflow.com/a/2094715; As a reminder of how C pointer works (its
own value and the value it points to), an example explanation is
https://www.geeksforgeeks.org/c-pointers/.

Stating that canaries protect the buffers x, y. Some answers assumed that
stack canaries protect all buffers in the stack, they do not. As we have seen in
the class, the canaries are only before the return address (and therefore protect
only the return address.) However, there exists extensions for compilers to do
that, but by default, it is not enabled.


https://stackoverflow.com/a/2094715
https://www.geeksforgeeks.org/c-pointers/

Q8-Q9

- Declaring that Meta is an Internet Service Provider or controls an Internet
Service provider. Multiple answers contained statements that Meta is either an
ISP or controls an ISP, and therefore it is a global adversary. Such assumptions
are not based on any information in the question norin real world. Indeed, Meta
is a global adversary in this question, but it operates on the application level and
not on the level of the internet infrastructure. Meta neither can nor needs to read
all the packets on the internet, since all the packets are moving through their
servers anyway.

- Using unjustified assumptions. For example, multiple answers considered
scenarios when corporate WiFiis used to communicate via Tor. However, there
is no information in the question pointing to it; moreover, using the corporate
hardware for sending the sensitive information outside is not the most
straightforward option. We removed points depending on how realistic/critical
the assumptionis. It is completely valid to use assumptions if one of the
following is present in the answer: 1) an explanation why this assumption holds
in reality; 2) what happens if the assumption does not hold.

Q10

- Justification does not address the particularities of CSRF. Multiple answers
justifications only suggest that general attack types are possible and not
specifically CSRF. Such answers do not discuss the reasons why CSRF is
specifically possible (e.g. having no checks for origin) or how a CSRF attack can
be executed against the server-side code presented. This includes generic
answers that throw keywords like “ambient authority”, “same origin policy”,
“confused deputy”, etc. without linking them to the problem at hand. These
answers received partial points, depending on the lack in justification.

- Claiming the professor’s action fully protects them. Many answers do not
make the distinction between fully protecting the professor and partially
protecting them sometimes. When the question mentions “... would protect him
...” without any adjectives, itis necessary to assume the requirement to be full
protection. Answers that argue for full protection did not receive full points.

- Mentioning the student “steals” the cookie and/or performs actions
unrelated to CSRF. Some answers describe an adversarial model that is not
typical of CSRF, demonstrating a lack of understanding of CSRF. Some of these
answers mention that the student can actively steal the cookie or send the
request from their own browser which describes orthogonal and most often
incoherent attacks. These answers only got partial points.



- Saying the cookie is insufficient because it includes the username which is
publicly known. Some answers demonstrate a lack of understanding in the role
of session cookies, describing them as only a storage location for public
information like username and email. These answers only got partial points.

- Confusing CSRF with XSS. Some answers confuse cross-site scripting and
cross-site request forgery either by explicitly naming the attack incorrectly or
providing a description or justification for XSS. These answers did not receive
points.

Q11

- Not taking into consideration that line 6 will exit the code if username is
incorrect. Most answers describe a code injection attack at line 14 by modifying
the username without addressing in any way or form that line 6 will cause the
code to exit. Answers that present assumptions about how line 6 can be
bypassed with a malicious username value were partially graded depending on
whether the assumption is reasonable. Unreasonable assumptions include
mentioning that “username=<script>...” will still bypass line 6. Such answers
did not receive points.

- Mentioning OS code injection or SQL injection. Some answers that still point
to line 6 reasonably describe attacks infeasible through exploiting line 14 in
isolation like OS code injection or SQL injection. These answers did not receive
points.

- Orthogonal answers and mentioning defenses. Some answers suggest
defenses —which we don’t ask for. In most cases, we did not reward the defense
with any points, but if the defense is canonically wrong, we removed points
depending on the severity of the error.

- Mentioning attacks that exploit lines other than line 14. Some answers
suggest attacks to exploit other lines than the requested one. These answers did
not receive points as they don’t answer the question.

- Thinking that the PHP code is executed over time. Some answers suggest the
idea that the PHP code for the webpage is executed slowly as the user visits the
page, implying that “we can change username after we execute line 6”. This is
incorrect as the totality of the PHP code is run on the server before the response
containing the rendered webpage HTML is returned to the client. These answers
did not receive points.

Q12

- Proposing to plug the USB stick in a factory-reset computer without
disconnecting from the network. Since the malware could be spreading over



the network, it is also important to disconnect the computer from the Wi-Fi (and
network in general).

- Proposing to only disconnect Alex’s laptop from the network. This is good to
stop the spreading of the malware when plugging the USB stick but will not stop
Alex’s laptop from being infected. Additionally, the malware can eventually
spread once reconnected to the network, which is bound to happen, since it’s
most likely not a computer Alex can just reset or throw away.

Q13

- Stating that the malware is a virus because it needs a host, and that the host
is Alex’s laptop. A virus needs a host application/program, as opposed to
malware that are self-contained programs like worms. But both need tobe on a
host machine.

- Indicating two types of malwares when just one was asked. This makes
correcting Q14 impossible, as the answer depends on the type of malware.

- Stating the malware is a botnet. A botnet is NOT a type of malware, itis a
machine infected and belonging to a network of compromised hosts. A botnet
could be considered the “payload” of a malware, i.e., what it does once it has
compromised a host.

Q14

- Redefining the firewall to answer the question. The simple firewall was
described in the question, so assuming the firewall functioned differently than
stated, by performing deep packet inspection for example, was not counted as a
valid justification for an answer.

- Stating that a worm can infect known applications to spread over the
network. Aworm is its own stand-alone application that could compromise or
use another application to spread (through emails for example), however it does
not infect another application.

Q15

- Answering that the user will always enter the same time because the key
does not change. Both the IV and the message change with time, so the
ciphertext will also be a new pseudo-random value at each epoch.



Q16

Q17

Recovering the key from the IV as an additional vulnerability. In the token case,
the IVis not sent over the network, only computed by the client and server
locally. Thus, an adversary cannot recover the key, as it never sees the IV.
Stating that there is an IV reuse vulnerability, since the time can wrap around
modulo 27256. While technically true, 30 seconds * 2%%is roughly 107" years
(the universe is roughly 10"’ years old).

Stating that the IV is predictable, without arguing why this is an issue, for
many ciphers (including AES modes) predictable Vs are fine as long as they are
unique. Stating that the IV is predictable could lead to a vulnerability depending
on the exact cipher mode used is an acceptable answer.

Not giving a counterexample. While this is stressed in previous MREs, many did
not fully read the question statement and did not answer accordingly. As asked
in the question, you must give a counterexample when justifying no.
Justifications consisting of “No because it’s easy to find (k’, t') such that h(k, t) =
h(k’, t’)” without a counterexample were not given any point.

Choosing and fixing the message (k, t) or the hash h when giving a
counterexample for first and second preimage resistance. For example, for
2" preimage resistance, (k, t) and h are arbitrary. When choosing a value for the
counterexample, e.g., “assuming (k, t) = (0, 0), then (1, 1) is a counterexample”,
what you are doing is providing a counterexample against collision resistance,
not 2" preimage resistance. In 2" preimage resistance, x (here x = (k, t)) is
arbitrary. An example of valid counterexample against 2" preimage resistance is
"(pad(t), k) has the same hash as (k, t)".

Assuming k or t is always known. The fact thatin the application XORHash is
used, the second input to XORHash tis the time indeed implies that one can
argue that it is known, assuming that the challenges are fresh. However, thisis a
characteristic of the application, not of the function. These answers did not
receive full points. Answers assuming k was known did not receive any point
because even in the context of the application the function XORHash is used in,
assuming a secret key is known is wrong.



	General Mistakes
	Q1
	Q2 - Q4
	Q3
	Q5 - Q7
	Q8 - Q9
	Q10
	Q11
	Q12
	Q13
	Q14
	Q15
	Q16
	Q17

